# Identification of rice endophytes and effect of their cultural filtrates on host cultivars

Urmila Dhua\*, Sudhiranjan Dhua, Apurba Chhotaray

Central Rice Research Institute, Cuttack - 753 006 (Odisha)

# ABSTRACT

Six endophytes were isolated from seeds of three long duration high yielding rice cultivars namely, Mayurkantha, Utkalprabha and Lunishree suitable for cultivation in rainfed lowland ecosystem of coastal Odisha. The six isolates included in this study were ascomycota fungi, Dendryphiella, Cladosporium, Acremonium, Valsa ambiens and Aspergillus oryzae have NCBI GenBank accession numbers viz. HM572292, HM572293, HM572295, HM572296. Isolate EN 18, isolated from the salt tolerant rice cultivar Lunishree was identified as Dendryphiella sp. which is a marine fungus. The germination percentage was not affected by the treatment with cultural filtrate of these endophytes and their metabolites present in cultural filtrates significantly enhanced length and weight of root and shoot of the rice genotypes.

Key words : rice, seed, endophytes, cultural filtrates, effect

Endophytes are fungi or bacteria which live within plant tissues, for entire or part of their life cycle and cause no apparent infection or symptoms. Colonization and propagation of endophytes and their secondary metabolites inside the plants may enhance hostproductivity and also may confer host the ability to adapt or resist abiotic and biotic stresses. An "inducible endophyte" was inoculated into rice which established a symbiotic relationship with the rice plant and promoted growth, antioxidant enzyme activity, and photosynthesis (Guo et al., 2004). The endophytes associated with seeds of various rice cultivars were isolated and identified (Dhua et al., 2010). Six endophytes were isolated from seeds of three long duration high yielding rice cultivars viz. Mayurkantha, Utkalprabha, and Lunisree. Four fungal cultures (GenBank accession numbers: HM572292, HM572293, HM572295, HM572296) were isolated from the seeds of rice variety Mayurkantha. One fungal endophyte (NCBI-GenBank accession number HM572294) was isolated from rice cv. Utkalprabha.

The endophyte associated with Lunishree was a non-sporulating isolate that belonged to 'mycelia sterilia'. Molecular techniques have been used successfully for phylogenetic placement and segregation of endophytic mycelia sterilia (Promputtha *et al.*, 2002). Internal Transcribed Spacer (ITS) region of Ribosomal DNA is now perhaps the most widely sequenced DNA region in fungi and was found to be useful for the identification of non sporulating endophytes. Hence, the present investigation was carried out to identify the fungus isolate EN18 by these molecular techniques and study the effect of these six fungal endophytes on growth of respective rice cultivars.

# MATERIALS AND METHODS

The EN18 culture was maintained on MS broth (Murashige and Skoog, 1962). DNA of this isolate was extracted (Dhua *et al.*, 2008, 2011). Internal Transcribed Spacer (ITS) region of Ribosomal DNA was amplified (White *et al.*, 1990) and sequenced for its identification. Primers used for PCR amplification were ITS-1 (TCCGTAGGTGAACCTGCGG); ITS-4 (TCCTCCGCTTATTGATATGC). Sequencing was outsourced to Chromous Biotech. Pvt. Ltd., Kolkata. Sequence alignment was done for identifying the microbes. The sequences were analyzed with the algorithms afforded by Blast algorithms for nucleotide

□ 244 □

or polypeptide homologous sequence analysis in NCBI (Zhang *et al.*, 2000) BLAST. Phylogenetic analyses were conducted in MEGA4 (Tamura *et al.*, 2007)

Six endophytes included in this study were grown in MS broth (Murashige and Skoog, 1962). Seeds of above mentioned rice cultivars (Mayurkantha, Utkalprabha and Lunishree) were soaked for twelve hours in various concentrations (undiluted; 50% dilution; 25% dilution) of cultural-filtrate of fifteen days old culture of respective endophytes.

Seeds of the rice variety Lunishree were treated with EN18; Seeds of Utkalprabha were treated with HM572294; and the seeds of Mayukantha were treated with HM572292, HM572293, HM572295, HM572296.

Treated and untreated seeds were kept at  $52^{\circ}$ C in a water bath for 10 minutes followed by shifting to ice cold water. Hot water treated seeds of all the treatments were transferred to Hoagland and Snyder (1934) culture solution.Germination percentage, root length, shoot length of 15 days old seedlings was measured and average length per seedling was calculated. Root and shoot weight of seedlings in all the treatments and replications was recorded.

# **RESULTS AND DISCUSSION**

Database sequences were searched by Mega BLAST. Sequences of *Dendryphiella* (HM572292), *Cladosporium* (HM572295), *Alternaria padwickii* (GU373650), *Alternaria longissima* (FJ971842) *and* uncultured *Ascomycota* (AM901799) had shown pairwise similarities with fungal isolate EN18. *Dendryphiella* and *Cladosporium* both had 99% similarity as well as E value zero with sequence of EN18 (Table1).

Evolutionary relationships of 5 taxa with isolate EN18 was studied (Fig.1). The evolutionary history was inferred using the Maximum Parsimony method (Eck and Dayhoff 1966). Tree #1 out of 4 most parsimonious trees (length = 24) is shown. The consistency index is (0.833333), the retention index is (0.625000), and the composite index is 0.546875 (0.520833) for all sites and parsimony-informative sites. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches (Felsenstein, 1985) The MP tree was obtained using the Close-Neighbor-Interchange algorithm with search level 3 (Felsenstein, 1985; Nei M and Kumar, 2000) in which the initial trees were obtained with the random addition of sequences (10 replicates). The codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated from the dataset (Complete Deletion option). There were a total of 10 positions in the final dataset, out of which 7 were parsimony informative. Phylogenetic analyses were conducted in MEGA4 (Tamura et al., 2007).

Pairwise distance and number of base substitutions per site were minimum with *Dendryphiella* (Table 2). All results are based on the pairwise analysis of 6 sequences. Analyses were conducted using the Maximum Composite Likelihood method in MEGA4 [(Tamura et al., 2004) and (Tamura et al., 2007)]. Codon positions included were  $1^{st} + 2^{nd}$  $+3^{rd}$  + Non coding. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option). There were a total of 10 *positions* in the final dataset. On the basis of above mentioned analysis the isolate EN 18 was identified as *Dendryphiella sp*. Isolate EN12, EN13, EN15 & EN19 were from local rice cultivar Mayurkantha, EN14 was

| Database sequences with<br>max. score showing similarity |                       | Max.<br>Identity | Max.<br>score | Query<br>coverage | E-value |
|----------------------------------------------------------|-----------------------|------------------|---------------|-------------------|---------|
| Accession                                                | Description           |                  |               |                   |         |
| HM572292                                                 | Dendryphiella         | 99%              | 931           | 99%               | 0       |
| HM572295                                                 | Cladosporium          | 99%              | 926           | 99%               | 0       |
| GU373650                                                 | Alternaria padwickii  | 98%              | 850           | 90%               | 0       |
| FJ971842                                                 | Alternaria longissima | 92%              | 643           | 85%               | 0       |
| AM901799                                                 | uncultured Ascomycota | 92%              | 651           | 85%               | 0       |

 Table 1. Database sequences searched by Mega BLAST and showing pair-wise similarities with fungal isolate EN18

#### **Rice endophytes**

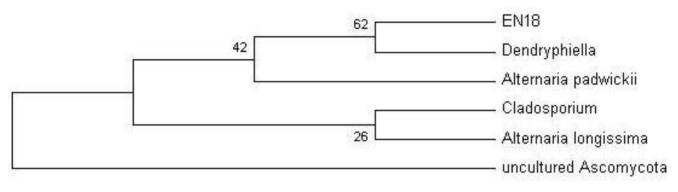



Fig. 1. Evolutionary relationships of 5 taxa with isolate EN18

from high yielding rice variety Utkalprabha. *Dendryphiella* (EN12 and EN18) was associated with salt tolerant rice genotype Lunisree as well as local cultivar of coastal Odisha.

The six isolates included in this study were ascomycota fungi. Dendryphiella(EN12, EN18) and Cladosporium(EN15) both belonged to Pezizomycotina, Dothideomycetes but Dendryphiella was from order Pleosporales and Cladosporium in Capnodiale(Table 3). Acremonium (EN13) and Valsa ambiens (EN14) both were in Sordariomtcetes. However Acremonium was placed in Hypocreomycetidae, Hypocreales and Valsa ambiens included in order Diaporthales was of Sordariomycetidae. Aspergillus oryzae (EN19) belonged to Eurotiomycetes, Eurotiomycetidae, Eurotiales (Table 3)

The germination percentage of rice cultivars was not affected by the treatments with cultural filtrate of all the endophytes included in this study. The metabolites of these endophytes present in the cultural filtrates significantly enhanced seedling length and weight of all the cultivars studied. Length and weight of Mayurkantha seedlings treated with endophyte cultural filtrate (EN12, EN13, EN15, EN19 isolated from Mayurkantha) was significantly more than the untreated control (Table 4).

Pure cultural filtrate of Dendryphiella (EN12 and EN18) enhanced seedling growth more than the diluted cultural filtrate. Undiluted cultural filtrate of *Dendryphiella* induced about 1.75 times increase in root length, 1.5 times increase in shoot length, 1.4 times increase in shoot weight and approximately 2.5 times

# Table 2 . Estimates of Evolutionary Divergence between Sequences

|                       | EN 18 |
|-----------------------|-------|
| Dendryphiella         | 9     |
| Cladosporium          | 14    |
| Alternaria padwickii  | 153   |
| Alternaria longissima | 201   |
| Uncultured Ascomycota | 16    |

increase in root weight of rice cultivars Mayurkantha and Lunisree (Table 4, Fig 2, Fig.3). The cultural filtrates of undiluted *Cladosporium* (EN15) *Acremonium* (EN13) and *Aspergillus oryzae* (EN19) promoted shoot growth more than the root growth (Table 4). *Cladosporium* (EN15) treated seedlings had almost double root weight than control though root length was at par with the untreated control. The endophytic *Valsa* enhanced the root length of rice cultivar Utkalprabha about 2.4 times and shoot length was doubled. Diluted cultural filtrate was found to be more effective for enhancement of root length (Table 5), although there was reduction in the root weight.

The six isolates included in this study were endophytic ascomycota fungi associated with rice seeds. Isolate EN 18, isolated from the salt tolerant rice cultivar had similarity with NCBI-GenBank accession number HM572292 and was identified as *Dendryphiella sp.* which is a marine fungi found in various plant and algal substrates from different geographical locations and climatic zones. The culture extract of *Dendryphiella* was reported to be antimicrobial, though production of the biologically active metabolites was strain-specific (Thomas *et al.*,

#### Oryza Vol. 48 No. 3, 2011 (244-249)

| Isolated from<br>rice genotype | Isolate No. | NCBI GenBank<br>accession no. | Organism           | Taxonomic status               |
|--------------------------------|-------------|-------------------------------|--------------------|--------------------------------|
| Mayurkantha                    | EN12        | HM572292                      | Dendryphiella      | Dothideomycetes; Pleosporales, |
|                                | EN13        | HM572293                      | Acremonium         | Sordariomycetes, Hypocreales   |
|                                | EN15        | HM572295                      | Cladosporium       | Dothideomycetes Capnodiales    |
|                                | EN19        | HM572296                      | Aspergillus oryzae | Eurotiomycetes; Eurotiales     |
| Utkalprabha                    | EN14        | HM572294                      | Valsa ambiens      | Sordariomycetes; Diaporthales  |
| Lunisree                       | EN18        | -                             | Dendryphiella      | Dothideomycetes; Pleosporales  |

Table 3. Taxonomy status and passport data of Ascomycota fungal endophytes isolated from rice seeds at CRRI, Cuttack

2006). This marine fungi, is adapted to survive and complete the life cycle in environments of high salinities (Guo *et al.*, 2004).

The germination percentage was not affected by the treatment with cultural filtrate of these endophytes and their metabolites present in cultural filtrates significantly enhanced length and weight of root and shoot of the genotypes. However, at lower concentration of cultural filtrate enhancement of root length was greater although the root weight was not

| Table 4. Effect of 'endophyte-cultural-fitrate(s | )' on 15 days old seedlings of rice variety Mayukantha |
|--------------------------------------------------|--------------------------------------------------------|
|--------------------------------------------------|--------------------------------------------------------|

| Treatment  | Root Length (mm) | Shoot Length (mm) | Seedling length (mm) | Root wt.<br>(mg) | Shoot wt.<br>(mg) |
|------------|------------------|-------------------|----------------------|------------------|-------------------|
| Control    | 48.3 ±2.8        | 25.3±1.4          | 73.6±3.8             | 64±2.0           | 104.0             |
| EN12       | 78.7±3.3         | 40.3±2.3          | 119±4.46             | 63±6.0           | 187.6             |
| EN12 (50%) | 66.6±3.0         | 44.8±1.9          | 111.5±3.49           | $108.5 \pm 13.5$ | 158.0             |
| EN13       | 59.3±3.5         | 50.6±3.0          | 109.9±6.0            | 125 ±9.0         | 233.6             |
| EN13(50%)  | 75.8±2.2         | 53.7±2.5          | 129.5±4.0            | $108 \pm 0.0$    | 227.3             |
| EN15       | 52.0±3.5         | 55.7±2.0          | 107.7±4.6            | 120±4.0          | 229.6             |
| EN15(50%)  | 56.5±3.6         | 54.6±2.0          | 111.2±4.8            | 167±20.0         | 248.3             |
| EN19       | 59.6±2.7         | 45±1.65           | 104.6±4.0            | 80±1.            | 132.0             |
| EN19(50%)  | 55.9±2.3         | 43.3±2.0          | 99.2±3.93            | 94±11.0          | 141.0             |

LSD (root/ shoot/ root+shoot length) at 0.01 = 9.2 LSD (5 seedling root wt.) at 0.05 = 23.5 LSD (5 seedling shoot wt.) at 0.05 = 14.8

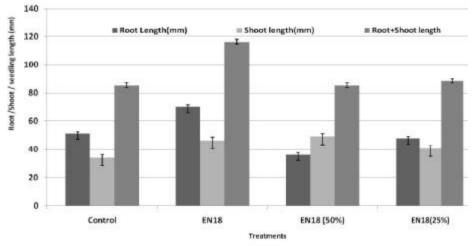



Fig. 2. Effect of EN18 cultural filtrate on root and shoot length of rice cultivar Lunisree

#### **Rice endophytes**

#### Urmila Dhua et al

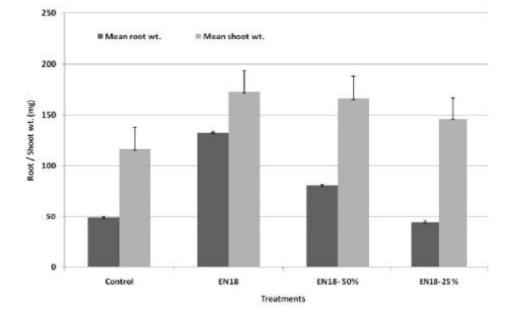



Fig. 3. Effect of EN18 cultural filtrate on root and shoot weight of rice cultivar Lunisree

increased as the increase in length did not increase the total root mass.

Endophytic *Cladosporium* populations were isolated from *Oryza sativa* collected from Bhadra River Project Area, Southern India (Naik *et al*, 2009). Gibberellins production and plant growth-promoting ability of endophytic *Cladosporium* were earlier reported (Muhammad *et al.*, 2009). The plant growth promoting potential of *Aspergillus* is also well known, as it produces substantial amounts of phosphatases (Tarafdar *et al.*, 1988). *Acremonium* the other endophyte which had increased the plant growth significantly during these studies was earlier also found to produce two major groups of substances for plant growth promoter (Lim and Suh, 1998). Colonization and propagation of these six endophytes inside the plants may enhance productivity of the host and also may help to adapt or resist abiotic stresses.

## REFERENCES

- Ahmad Nadeem, Muhammad Hamayun, Sumera Afzal Khan, Abdul Latif Khan, In-Jung Lee and Dong-Hyun Shin, 2010. Gibberellin-Producing Endophytic Fungi Isolated from *Monochoria vaginalis* J. Microbiol. Biotechnol. 20(12):1744–1749
- Dhua U, Bhattacharjee B, Dhua SR, Chhotaray A, Sahoo I and Nayak S, 2010. Identification of endophytic fungi associated with rice seeds by molecular techniques. Plant Science Research, Volume 32, p.92-100.

### Table 5. Effect of 'endophyte-cultural-fitrate(s)' on 15 days old seedlings of rice variety Utkalprabha

| Treatment | Root Length in mm | Shoot Length in mm | Root+Shoot Length in mm | Shoot-wt.<br>(mg) | Root wt.<br>(mg) |
|-----------|-------------------|--------------------|-------------------------|-------------------|------------------|
| Control   | 25.8±2            | 30± 1.5            | 55.9±1.7                | 93±1.6            | 49±1.1           |
| EN14      | 55.8±2            | 56.9±1.8           | 112.7±2                 | 173.5±1.8         | 74.5±1.5         |
| EN14-50%  | 48.6±1.8          | 50±1.6             | 95.8±1.7                | $168 \pm 1.8$     | 78±1.5           |
| EN14-25%  | 60.5±2.3          | 62.3±2             | 122.8±2.1               | 179±1.9           | 73±1.4           |

LSD(root/ shoot/ root+ shoot length) at 0.01 = 7.43 LSD (5 seedling shoot wt.) = 27.7; LSD (5 seedling root wt.) = 13.0

#### □ 248 □

- Dhua U, Sahoo I, Nayak S, Behera L, Mohanty SK and Dhua SR, 2008. Identification of *Fusarium* isolates for use in pathogen derived resistance for management of seed discoloration in rice. Oryza Vol. 45 No.4 :303-307
- Dhua U, Dhua SR and Chhotaray A, 2011. Characterization of seedling blight on rice variety Sarala. ORYZA, vol. 47(3) p.257-259
- Eck RV and Dayhoff MO, 1966. Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Springs, Maryland.
- Felsenstein J, 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
- Hoagland DR and Snyder W C, 1934. Nutrition of strawberry plant under controlled conditions: (a) Effects of deficiencies of boron and certain other elements: (b) Susceptibility to injury from sodium salts. PTOCA. m . S oc. hort.Sci. 30, 288.
- Guo LD, Xu L, Zheng WH and Hyde KD, 2004. Genetics variation 8. Kohlmeyer, J., and Kohlmeyer, E., 1979. Marine mycology: the higher fungi. Academic Press, New York, San Francisco, London.
- Muhammad Hamayun, Sumera Afzal Khan, Nadeem Ahmad, Dong-Sheng Tang, Sang-Mo Kang, Chae-In Na, Eun-Young Sohn ÆYoung-Hyun Hwang, Dong-Hyun Shin, Byung-Hyun Lee E, Jong-Guk Kim, In-Jung Lee, 2009. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr .World J Microbiol Biotechnol 25:627–632
- Lim Hyung-bum, Suh joo-won, 1998. Plant growth promoting activity of metabolites produced by *Acremonium strictum* MJN1.International Symposium, 23Oct.1998, at ChungamNat'l Univ.Taejon,Korea.
- Murashige T. and Skoog F, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3): 473-497.
- Nei M and Kumar S, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.

- Naik B Shankar, J Shashikala and Y L Krishnamurthy, 2009. Study on the diversity of endophytic communities from rice (*Oryza sativa* L.) and their antagonistic activities in vitro. Microbiological Research, Volume 164, Issue 3, Pages 290-296.
- Promputtha I, Lumyong S, Lumyong P, McKenzie EHC and Hyde KD, 2002. Fungal succession of senescent leaves of Manglietia garrettii in Doi Suthep-Pui National Park, northern Thailand. Fungal Diversity 10: 89-100.
- Tarafdar JC, Rao AV, Bala K, 1988. Production of phosphatases by fungi isolated from desert soils. Folia Microbiol (Praha) 33:453-457.
- Tamura K, Dudley J, Nei M and Kumar S, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599.
- Tamura K, Nei M and Kumar S, 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030-11035.
- Thomas Edison dela Cruz, Stefan Wagner, Barbara Schulz, 2006. Physiological responses of marine Dendryphiella species from different geographical locations. Mycol Progress 5: 108–119
- White TJ, Burns T, Lee S and Taylor JW, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.Pp. 315-322 In: PCR Protocols: A Guide to methods and Application, eds. Innis, M.A., Gelfand, D.H. Sninsky, J.J., and white, T.J., Academic Press, New York.
- Yuan Zhi-Lin, Dai Chuan-Chao, XIA LI, TIAN Lin-Shuang, WANG Xing-Xiang, 2007. Extensive host range of an endophytic fungus affects the growth and physiological functions in rice (Oryza sativa L.). Symbiosis, vol. 43, No.1, pp. 21-28
- Zhang Z, Schwartz S, Wagner L and Miller W, 2000. A greedy algorithm for aligning DNA sequences. J Comput Biol, 7(1-2):203-14.